Oxazolidines as Intermediates in the Asymmetric Synthesis of 3-Substituted and 1,3-Disubstituted Tetrahydroisoquinolines

Sadagopan Raghavan* and Puspamitra Senapati
Natural Product Chemistry, Indian Institute of Chemical Technology, Hyderabad 500007, India

S Supporting Information

Abstract

A diastereoselective mercury(II)-promoted intramolecular cyclization of unsaturated aldehyde via an oxazolidine to prepare $\mathrm{C}-3$-substituted tetrahydroisoquinoline is disclosed. The C-3 stereogenic center is subsequently exploited to create the $\mathrm{C}-1$ stereocenter by coordination of the nucleophilic reagent to the oxygen atom of oxazolidine. Both cis- and trans-1,3-disubstituted tetrahydroisoquinolines can be readily prepared. In addition, when a cationic rhodium complex was used, intramolecular hydroamination was effected, thus avoiding mercury(II) salts and demercuration. The reaction is general and works well using aliphatic and aromatic aldehydes.

INTRODUCTION

1,2,3,4-Tetrahydroisoquinolines (THIQs; Figure 1) constitute a large class of natural and synthetic compounds with a wide diversity of biological properties. ${ }^{1}$ The diverse pharmaceutical applications of THIQs have stimulated the development of several methodologies for the efficient preparation of these compounds. Much synthetic effort has been devoted to the synthesis of 1 -substituted THIQs. The Pictet-Spengler, ${ }^{2}$ Bischler-Napieralski cyclization/reduction, ${ }^{3}$ noble transition metal catalyzed asymmetric hydrogenation of isoquinoline or dihydroisoquinoline derivatives, ${ }^{4,5}$ and asymmetric nucleophilic addition to an iminium ion of the cyclic precursor ${ }^{6}$ are popular methods for the synthesis of C-1-substituted THIQs. Few examples are known for the enantioselective synthesis of $1,3-$ disubstituted THIQs. Diastereoselective alkylation of C-3 substituted THIQs afforded chiral trans-1,3-disubstituted derivatives. ${ }^{7}$ The Pictet-Spengler ${ }^{8}$ and intramolecular Heck reactions, ${ }^{9}$ electrophile-induced cyclization, ${ }^{10}$ nucleophilic addition to 3 -substituted isoquinolines followed by ionic hydrogenation, ${ }^{11}$ and three-component reductive amination using an organocatalyst followed by intramolecular Michael addition ${ }^{12}$ have been disclosed for the synthesis of 1,3-disubstituted THIQs. A key factor to be addressed in the synthesis of these molecules is the control of relative and absolute stereochemistries at $\mathrm{C}-1$ and $\mathrm{C}-3$. Although some elegant routes ${ }^{13}$ have been disclosed, a generally applicable synthesis of 1,3-disubstituted THIQs is desirable.

We report herein a diastereoselective electrophile-induced intramolecular cyclization of an iminoalcohol/oxazolidine to prepare C-3-substituted THIQs (Scheme 1). The C-3 stereogenic center is subsequently exploited to create the C-1 stereocenter by nucleophilic addition to an iminium ion.

The key feature in this sequence is the use of a carbonyl group as a handle, which through the oxazolidine nitrogen functions as a nucleophile to create the C-3 stereocenter and subsequently
through the iminium ion functions as an electrophile to create the C-1 stereocenter, both in an asymmetric fashion.

RESULTS AND DISCUSSION

3-Monosubstituted THIQ and trans-1,3-Disubstituted THIQ. The synthetic study commenced with the known aldehyde $\mathbf{1},{ }^{14}$ which was prepared from 2-iodobenzoic acid. Aldehyde 1 on reaction with (S)-phenylglycinol in dichloromethane in the presence of anhydrous magnesium sulfate furnished an equilibrium mixture of imino alcohol 2 and oxazolidine 3 ,which was used without characterization in the next step. Reaction of the mixture of $\mathbf{2}$ and $\mathbf{3}$ in dichloromethane with a small excess of mercuric trifluoroacetate furnished the oxazolidine 4 as a single isomer, the structure of which was established by NOE (Scheme 2). Characteristically a NOE was observed between H_{c} and H_{d}; also, H_{a} showed no NOE. The most stable ground-state conformation of 3 would have the hydrogen in the same plane as the allyl residue ($\mathrm{A}^{1,3}$ strain is avoided). re-Face attack of mercuric trifluoroacetate onto the double bond followed by si-face attack by the oxazolidine moiety involving a half-chair conformation would explain the formation of 4 .

Reductive demercuration using tributyltin hydride and triethylborane ${ }^{15}$ cleanly afforded the C-3 methyl substituted THIQ derivative 5. The next objective was the introduction of a C-1 substituent by nucleophilic addition. The reaction of 5 with methylmagnesium iodide, vinylmagnesium bromide, and 1 octynylmagnesium chloride cleanly afforded trans-1,3- disubstituted THIQ derivatives 6-8 (Scheme 3). The diastereoselective addition of organomagnesium compounds to oxazolidines has been described before. ${ }^{8}$ Reduction of 4 with an excess of tributyltin hydride furnished the C-3-monosubstituted derivative 9.

[^0]

Solifenacin

Lemonomycin
cis-1,3-disubstituted THIQ

Korupensamine B trans-1,3-disubstituted THIQ

Figure 1. Naturally occurring biologically active tetrahydroisoquinolines.

Scheme 1. General Route to THIQs using Oxazolidine Intermediates

Scheme 2. Synthesis of Oxazolidine 4 by $\mathbf{H g}$ (II)-Promoted Aminomercuration

Oxidative demercuration of 4 using NaBH_{4} and TEMPO ${ }^{16}$ cleanly furnished the oxygenated derivative $\mathbf{1 0}$. Reduction of $\mathbf{1 0}$ using $\mathrm{Zn} / \mathrm{CH}_{3} \mathrm{COOH}$ furnished the $\mathrm{C}-3$ hydroxymethyl derivative 11. Compound 11 has been utilized in a diastereoselective alkylation to prepare trans-1,3-disubstituted THIQ. ${ }^{17}$

The structure of compound 6 was assigned by NOE studies. The presence of NOE between C-1 H and C-3 Me and the absence of NOE between C-1 H and C-3 H confirmed that both Me groups are anti to each other. The structures were assigned to compounds 7 and 8 on the basis of analogy. The stereochemical outcome can be rationalized by postulating transition state \mathbf{I}, wherein the phenyl group of the amino alcohol would prevent nucleophilic attack to the si face of the iminium ion while the
oxygen atom of the amino alcohol moiety would coordinate with the Grignard reagent and deliver it to the $r e$ face (Scheme 4).

The generality of the reaction was further explored using aldehydes $\mathbf{1 2},{ }^{18} \mathbf{1 4}$, and $\mathbf{1 6}^{19}$ (Scheme 5). The aminomercuration reaction proceeded in excellent yields with electron-rich aldehydes, and also ortho substitution relative to both carbonyl and allyl groups is well tolerated.

The reaction works well with the trans-disubstituted alkene 19 obtained by cross metathesis of aldehyde 1 and cis-1,4butanediol. The structures were assigned to $\mathbf{1 3}, \mathbf{1 5}, 17$, and 20 on the basis of analogy. These organomercurials can be transformed, as illustrated in Scheme 3 using compound 4, into trans-1,3-disubstitued THIQs.

Scheme 3. Synthesis of trans-1,3-Disubstituted THIQs and 3-Substituted THIQs

Scheme 4. Model To Rationalize Stereoselective Formation of trans-1,3-THIQs

Racemic aliphatic aldehyde $2 \mathbf{1 0}^{20}$ reacted under similar conditions to furnish a diastereomeric equimolar mixture of oxazolidines 22 and 23 (Scheme 6). The formation of only two isomers can be explained by efficient 1,2 -asymmetric induction due to the phenyl group. Either 22 or 23 can be selectively obtained from optically pure 21. Characteristic NOEs were observed between protons of H_{a} and $\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{b}}$ and H_{c} and H_{d} and H_{e} in compound 22, thus establishing its structure. The structure of compound 23 should be as depicted. 2,4,5-Trisubstituted pyrrolidine derivatives can be readily obtained by the reaction of bicyclic compound $\mathbf{2 2}$ or $\mathbf{2 3}$ with Grignard reagents following the disclosed methodology. In addition, with α-substituted and α, β disubstituted, γ, δ-unsaturated aliphatic aldehydes as starting materials 2,3,5-trisubstituted and 2,3,4,5- tetrasubstituted pyrrolidines can be obtained.
cis-1,3-Disubstituted THIQs. Since cis-1,3-disubstituted THIQs are more common in natural and synthetic compounds, we explored the stereoselective reduction of a THIQ tetrasubstituted at $\mathrm{C}-1$ as a route to cis-1,3-disubstituted THIQs. Treatment of 24^{21} with (S)-phenylglycinol in the presence of titanium tetraethoxide furnished presumably an imine in equilibrium with the oxazolidine derivative, which without characterization was subsequently reacted with mercuric trifluoroacetate to yield oxazolidine 25 after treatment with aqueous potassium bromide (Scheme 7). Since compound 25
was not stable to column chromatography, the crude compound was taken ahead to demercuration. Demercuration using tributyltin hydride cleanly furnished compound 26. Disappointingly, reduction of oxazolidine 26 with sodium borohydride in the presence of trifluoroacetic acid furnished the product 6 . Hydride transfer to the si face of the iminium ion would account for the formation of 6 . However, reduction with alane ${ }^{22}$ furnished the cis-1,3-disubstituted THIQ 27. With alane the hydride delivery probably takes place by coordination to the oxazolidine oxygen. The structure assigned to 27 was confirmed by NOE studies that revealed NOE between $\mathrm{C}-1 \mathrm{H}$ and $\mathrm{C}-3 \mathrm{H}$. In a similar fashion, ketone 28^{23} was converted to mercuric compound 29, and demercuration furnished oxazolidine $\mathbf{3 0}$, which on reduction using alane afforded the cis-THIQ 31. Thus, we have developed a route to selectively prepare cis- and trans-1,3-disubstituted THIQs.

Catalytic Hydroamination. A drawback of the methodology was the use of stoichiometric amounts of mercuric salt for aminomercuration and tributyltin hydride for demercuration. At this point in the research, the catalytic hydroamination reaction was envisaged as an alternate approach to prepare substituted THIQs. Catalytic hydroamination, if successful, would circumvent the use of both of these toxic reagents. Interestingly, the oxazolidine 32 could be obtained by subjecting the mixture of imino alcohol and oxazolidine, obtained from aldehyde 16 and

Scheme 5. Synthesis of a Variety of Organomercurials by $\mathbf{H g}$ (II)-Promoted Cyclization

12

14

Conditions same as above
82\%

17

20

Scheme 6. Preparation of Pyrrolidine Derivatives from an Acyclic Aliphatic Aldehyde

21

$0^{\circ} \mathrm{C}-\mathrm{rt}, 4 \mathrm{~h}$, aq $\mathrm{KBr}, 85 \%$

23
(S)-phenylglycinol, to intramolecular hydroamination in the presence of $\mathrm{Rh}(\mathrm{COD}) \mathrm{BF}_{4}$ and DPEphos in 1,4-dioxane ${ }^{24}$ (Scheme 8). Compound 32 was identical with the product obtained by tributyltin hydride mediated demercuration of 17. Aldehyde 12 likewise furnished oxazolidine 33. Thus, catalytic hydroamination would be a valuable alternate route to C-3substituted and trans-1,3-disubstituted THIQs, avoiding stoichiometric mercuric salts and tributyltin hydride.

CONCLUSION

Mercuric trifluoroacetate promoted diastereoselective preparation of 3-substituted THIQ from an o-allyl aldehyde is disclosed. The C-3 substituent serves to introduce the C-1 stereogenic center to access either 1,3-trans or 1,3-cis THIQs. The oxazolidine moiety functions as both a nucleophile and an electrophile in the creation of C-3 and C-1 stereocenters, respectively. The reaction can be conducted by using a catalytic amount of $\mathrm{Rh}(\mathrm{I})$ catalyst via hydroamination. Both cis and trans isomers of chiral 1,3 -disubstituted $1,2,3,4$-THIQs are found in biologically active alkaloids. The present work proposes a simple route to both the substitution patterns and compares favorably in
terms of efficacy and scope to previous approaches. Substituted pyrrolidine and piperidine derivatives can be likewise be readily obtained. A simple readily available unsaturated aldehyde is converted to a complex target structure.

EXPERIMENTAL SECTION

Dry reactions were performed under an inert atmosphere using argon or nitrogen. All glassware apparatus used for reactions were thoroughly oven-dried. Anhydrous solvents were distilled prior to use: THF from Na and benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene from $\mathrm{CaH}_{2} ; \mathrm{MeOH}$ from Mg cake; CHCl_{3} from $\mathrm{P}_{2} \mathrm{O}_{5}$; acetone from KMnO_{4} and $\mathrm{K}_{2} \mathrm{CO}_{3}$. Commercial reagents were used without purification. Column chromatography was carried out by using silica gel (100-200 mesh). Analytical thin-layer chromatography (TLC) was run on silica gel 60 F254 precoated plates ($250 \mu \mathrm{~m}$ thickness). Optical rotations $[\alpha]_{\mathrm{D}}$ were measured on a polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. Infrared spectra were recorded neat or in KBr (as mentioned) and reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Mass spectral data were obtained using MS (EI) ESI and HRMS mass spectrometers. High-resolution mass spectra (HRMS; ESI+) were obtained using either a TOF or a double-focusing spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 , 400 , or 500 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 75,100 , or 125 MHz in

Scheme 7. Synthesis of cis-1,3-Disubstituted THIQs

Scheme 8. Preparation of THIQ Derivatives by Rh(I)-Catalyzed Hydroamination

CDCl_{3} with the residual solvent signal as an internal standard unless mentioned otherwise; chemical shifts are in ppm downfield from tetramethylsilane, and coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to designate signal multiplicity: $s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

General Procedure for the Preparation of Organomercurials. To a stirred solution of the aldehyde (1 equiv) in anhydrous dichloromethane (1 M) was added (S)-phenylglycinol (1.1 equiv) followed by anhydrous MgSO_{4} (1 equiv). The reaction mixture was stirred at room temperature for 12 h . The reaction mixture was diluted with anhydrous dichloromethane (0.25 M) and cooled to $0^{\circ} \mathrm{C}$, and mercuric trifluoroacetate (1.2 equiv) was added. The reaction mixture was gradually warmed to room temperature and stirred further for a period of 4 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched by adding saturated aqueous KBr solution, and stirred at room temperature
for another 30 min . The resulting suspension was filtered through a pad of Celite, and the Celite pad was washed with dichloromethane (2×5 mL). The aqueous and organic layers were separated, and the aqueous layer was extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated brine, dried, and evaporated to furnish the crude compound, which was purified by column chromatography using EtOAc/hexane (v/v) as the eluent to afford pure organomercurials.
(((3S,5S,10bR)-3-Phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]-isoquinolin-5-yl)methyl)mercury(II) Bromide (4). Following the general procedure, the imine prepared from 2 -allyl benzaldehyde $\mathbf{1}$ ($146 \mathrm{mg}, 1 \mathrm{mmol}$) and (S)-phenylglycinol ($151 \mathrm{mg}, 1.1 \mathrm{mmol}$) in the presence of anhydrous MgSO_{4} was reacted with mercuric trifluoroacetate ($479 \mathrm{mg}, 1.1 \mathrm{mmol}$) to afford pure $4(436 \mathrm{mg}, 0.8 \mathrm{mmol})$ after aqueous KBr treatment as a pale white solid in 80% yield after column
chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v/v) as the eluent. Mp : $79-81{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v}) .[\alpha]_{\mathrm{D}}{ }^{25}=+1.9(c 1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): 2924, 2855, 1639, 1385, 1028, $755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.43-7.01(\mathrm{~m}, 9 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=8.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $15.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=15.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.2(\mathrm{dd}, J=12.2,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=12.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 142.8, 133.6, 132.3, 129.6, 128.3, 128.0, 127.6, 127.3, 126.9, 126.8, 90.8, 73.5, 68.2, 56.3, 44.1, 40.0. MS (ESI): $545[\mathrm{M}]^{+}$. HRMS (ESI): m / z $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NOBrHg} 545.0278$, found 545.0269.
(((3S,5S, 10bR)-7-(Benzyloxy)-8-methoxy-3-phenyl-3,5,6,10b-tet-rahydro-2H-oxazolo[2,3-a]isoquinolin-5-yl)methyl)mercury(II) Bromide (13). Organomercurial $13(578 \mathrm{mg}, 0.85 \mathrm{mmol})$ was obtained, following the general procedure, from aldehyde $12(282 \mathrm{mg}, 1 \mathrm{mmol})$ as a white solid in 85% yield after column chromatography using 15% $\mathrm{EtOAc} /$ hexane (v / v) as the eluent. Mp: $143-145^{\circ} \mathrm{C}$. $\mathrm{R}_{\mathrm{f}}=0.2(15 \%$ $\mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v}) .[\alpha]_{\mathrm{D}}{ }^{25}=+69.2\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2924, 2854, 1717, 1595, 1457, 1277, 1022, $751 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.5-7.3(\mathrm{~m}, 10 \mathrm{H}), 7.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=8.3$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=9.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.39(\mathrm{~m}$, $1 \mathrm{H}), 3.0(\mathrm{dd}, J=15.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.2(\mathrm{dd}, J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dd, $J=15.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=12.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.3,143.6,142.7,137.4,129.6,128.7,128.4,128.3$, 127.9, 126.9, 125.4, 123.7, 111.1, 90.6, 74.7, 73.2, 68.0, 55.9, 55.8, 44.1, 33.7. MS (ESI): $682[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{BrHg} 681.0802$, found 681.0792.

The aldehyde 14 was prepared from the known methyl 3-(benzyloxy)-5-hydroxybenzoate by employing a straightforward sequence of reactions.

Methyl 3-(Allyloxy)-5-(benzyloxy)benzoate (I). To a solution of methyl 3-(benzyloxy)-5-hydroxybenzoate ($2 \mathrm{~g}, 8 \mathrm{mmol}$) in anhydrous acetone $(16 \mathrm{~mL})$ were added allyl bromide $(0.8 \mathrm{~mL}, 9.6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8 \mathrm{mmol})$. The mixture was refluxed for 3 h , inorganic salts were removed by filtration, and the solvent was evaporated to afford compound $\mathbf{I}(2 \mathrm{~g}, 7 \mathrm{mmol})$ as a red viscous liquid in 87% yield. $R_{\mathrm{f}}=0.2$ ($10 \% \mathrm{EtOAc} /$ hexane, v/v). IR (neat): 2948, 1722, 1597, 1442, 1237, 1162, 1050, $766 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.3(\mathrm{~m}$, $5 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.19-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.43-$ $5.24(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,159.2,159.1,136.0,132.3,131.5$, 128.1, 127.6, 127.0, 117.4, 107.79, 107.74, 106.7, 69.7, 68.5, 51.7. MS (ESI): $299[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}$ 299.1277, found 299.1274.

Methyl 2-Allyl-5-(benzyloxy)-3-hydroxybenzoate (II). A solution of methyl benzoate I ($2 \mathrm{~g}, 7 \mathrm{mmol}$) in dimethylacetamide $(4 \mathrm{~mL})$ was stirred at $180^{\circ} \mathrm{C}$ for 10 h . The cold solution was washed with aqueous 2 N NaOH solution $(2 \times 10 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, acidified with 2 N concentrated HCl , and extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, and evaporated to afford compound II (1.4 g, 4.9 $\mathrm{mmol})$ as a viscous liquid in 70% yield. $R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} /$ v). IR (neat): 2949, 1705, 1608, 1340, 1202, 1033, $739 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ $(\mathrm{d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.84(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.2,157.5$, 155.8, 136.6, 136.4, 131.9, 128.4, 128.1, 127.9, 127.3, 115.2, 108.7, 106.6, 70.0, 52.0, 30.4. MS (ESI): $299[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}$ 299.1277, found 299.1275.

Methyl 2-Allyl-3,5-bis(benzyloxy)benzoate (III). To a suspension of sodium hydride (60% in Nujol, $240 \mathrm{mg}, 6 \mathrm{mmol}$) in anhydrous THF (10 mL) cooled to $0^{\circ} \mathrm{C}$ was added n-tetrabutylammonium iodide (185 mg , 0.5 mmol) followed by the dropwise addition of a solution of the phenol II $(1.4 \mathrm{~g}, 4.9 \mathrm{mmol})$ in anhydrous THF $(10 \mathrm{~mL})$. The reaction mixture was stirred and warmed to room temperature gradually over a period of 30 min . The reaction mixture was recooled to $0^{\circ} \mathrm{C}$, and neat benzyl bromide ($0.7 \mathrm{~mL}, 6 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at room temperature for 6 h under an atmosphere of nitrogen and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The two layers were separated, and the aqueous layer was extracted with
ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed successively with water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography using $5 \% \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})$ as the eluent to afford pure benzyl ether III $(1.5 \mathrm{~g}, 3.9 \mathrm{mmol})$ in 80% yield as a viscous oil. $R_{\mathrm{f}}=0.2(5 \% \mathrm{EtOAc} /$ hexane, v/v). IR (neat): 2927, 1719, $1600,1454,1234,1054,735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.5-$ $7.2(\mathrm{~m}, 10 \mathrm{H}), 7.0(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.7(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.83$ $(\mathrm{m}, 1 \mathrm{H}), 5.1-4.84(\mathrm{~m}, 6 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}), 3.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,157.7,157.4,137.1,136.5,136.4$, 131.8, 128.4, 128.2, 127.9, 127.7, 127.5, 127.0, 122.9, 114.4, 106.6, 104.0, 70.2, 70.1, 51.9, 30.6. MS (ESI): $389[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{4} 389.1748$, found 389.1747 .
(2-Allyl-3,5-bis(benzyloxy)phenyl)methanol (IV). To a stirred suspension of lithium aluminum hydride ($174 \mathrm{mg}, 4.6 \mathrm{mmol}$) in anhydrous THF (20 mL) cooled to $0{ }^{\circ} \mathrm{C}$ was added a solution of compound III ($1.5 \mathrm{~g}, 3.9 \mathrm{mmol}$) in anhydrous THF $(10 \mathrm{~mL})$ dropwise under an N_{2} atmosphere, and the mixture was warmed to room temperature over a period of 1 h . The reaction mixture was recooled to 0 ${ }^{\circ} \mathrm{C}$ and quenched by adding small ice pieces. The precipitated solids were filtered through Celite, and the solids were washed with hot EtOAc $(2 \times 10 \mathrm{~mL})$. The combined filtrates were evaporated under reduced pressure, and the residue was purified by column chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent to afford the compound IV (1.1 $\mathrm{g}, 3.3 \mathrm{mmol})$ as a yellow liquid in 85% yield. $R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, v/v). IR (neat): 3302, 2924, 1600, 1433, 1151, 1041, $738 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.13(\mathrm{~m}, 10 \mathrm{H}), 6.57(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.75(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.75(\mathrm{~m}$, $6 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 158.2,157.4,140.9,137.5,137.0,136.9,128.53,128.5,127.9$, 127.7, 127.5, 127.0, 118.6, 114.4, 105.5, 99.9, 70.1, 70.0, 63.1, 29.3. MS (ESI): $361[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{3}$ 361.1807, found 361.1803.

2-Allyl-3,5-bis(benzyloxy)benzaldehyde (14). To a solution of oxalyl chloride $(0.4 \mathrm{~mL}, 4.9 \mathrm{mmol})$ in anhydrous dichloromethane $(20 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO ($0.5 \mathrm{~mL}, 6.6 \mathrm{mmol}$) in anhydrous dichloromethane $(5 \mathrm{~mL})$, and the mixture was stirred at the same temperature for 15 min . A solution of compound IV ($1.1 \mathrm{~g}, 3.3 \mathrm{mmol}$) in anhydrous dichloromethane (5 mL) was added dropwise to the above mixture, and stirring continued at the same temperature for $45 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(2.3 \mathrm{~mL}, 17 \mathrm{mmol})$ was added, and the reaction mixture was warmed to $-10^{\circ} \mathrm{C}$. Water $(5 \mathrm{~mL})$ was added, the two layers were separated, and the aqueous layer was extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography using $5 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent to afford pure compound $14(1 \mathrm{~g}, 2.9 \mathrm{mmol})$ as a red liquid in 88% yield. $R_{\mathrm{f}}=0.2(5 \% \mathrm{EtOAc} /$ hexane, v/v). IR (neat): 2928, 1686, 1599, 1285, 1152, 1032, $739 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.2(\mathrm{~s}, 1 \mathrm{H})$, $7.47-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.08-5.9(\mathrm{~m}, 1 \mathrm{H}), 5.16-4.82(\mathrm{~m}, 4 \mathrm{H}), 3.8(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.4,158.1,157.8,137.0,136,4,136.3$, 135.2, 128.5, 128.0, 127.9, 127.5, 127.0, 124.9, 115.2, 106.5, 104.6, 70.5, 70.2, 27.6. MS (ESI): $359[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{3} 359.1658$, found 359.1647 .
(((3S,5S, 10bR)-7,9-Bis(benzyloxy)-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinolin-5-yl)methyl)mercury(II) Bromide (15). Organomercurial $15(530 \mathrm{mg}, 0.7 \mathrm{mmol})$ was obtained from aldehyde 14 ($358 \mathrm{mg}, 1 \mathrm{mmol}$) as a white solid in 70% yield after column chromatography using $15 \% \mathrm{EtOAc} /$ hexane (v/v) as the eluent. Mp : $69-71^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v}) .[\alpha]_{\mathrm{D}}{ }^{25}=+21.8(c 1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): 2924, 1718, 1600, 1453, 1262, 1028, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.32(\mathrm{~m}, 15 \mathrm{H}), 6.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.09-5.0(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{dd}, J$ $=8.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=16.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=16.3$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.3(\mathrm{dd}, J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=12.2,1.9 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.3,155.8,142.6,136.7,136.5$, 135.7, 129.5, 128.4, 127.9, 127.5, 127.3, 127.2, 127.1, 126.8, 115.8, 103.5,
100.5, 90.7, 73.2, 70.1, 70.0, 67.9, 56.0, 32.9, 29.5. MS (ESI): $758[\mathrm{M}+$ $\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{BrHg} 758.1188$, found 758.1162 .

The aldehyde 16 was prepared from methyl 2-iodo-6-methylbenzoate \mathbf{V} in a three-step sequence.

Methyl 2-Allyl-6-methylbenzoate (VI). To a solution of i $\mathrm{PrMgCl} . \mathrm{LiCl}(8.9 \mathrm{~mL}, 8.9 \mathrm{mmol}, 1 \mathrm{M} / \mathrm{THF})$ in anhydrous THF (9 $\mathrm{mL})$ cooled to $-10^{\circ} \mathrm{C}$ was added a solution of compound $\mathbf{V}(2.1 \mathrm{~g}, 8.1$ mmol) in THF (3 mL), and the mixture was stirred with the temperature allowed to rise to $0^{\circ} \mathrm{C}$ over a period of 30 min . The reaction mixture was recooled to $-10^{\circ} \mathrm{C}$, and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(0.1 \mathrm{~mL}, 1 \mathrm{M} / \mathrm{THF})$ was added. After 5 min , allyl bromide $(0.5 \mathrm{~mL}, 9.7 \mathrm{mmol})$ was added to this mixture, and it was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the mixture was stirred at room temperature for another 30 min . The reaction mixture was extracted with ethyl acetate $(2 \times 25 \mathrm{~mL})$. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to furnish the crude compound, which was purified by column chromatography using $5 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent to afford pure compound VI $(1.1 \mathrm{~g}, 6 \mathrm{mmol})$ as a colorless liquid in 75% yield. $R_{\mathrm{f}}=0.5(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v})$. IR (neat): 2952, $1729,1437,1271,1115,1071,757 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.27-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.94-5.8(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.35(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.3(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 170.1,137.0,136.6,135.1,133.5,129.4,128.0,126.9,115.9,51.6,38.0$, 19.6. MS (ESI): $191[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$ 191.1065, found 191.1068.
(2-Allyl-6-methylphenyl)methanol (VII). Following the procedure detailed for the preparation of IV, compound VII ($777 \mathrm{mg}, 4.8 \mathrm{mmol}$) was obtained from compound VI $(1.1 \mathrm{~g}, 6 \mathrm{mmol})$ as a viscous liquid in 80% yield after column chromatography using 10% EtOAc/hexane (v/ v) as the eluent. $R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v})$. IR (neat): 3448, 2922, 1637, 1467, 1261, 914, 770, $665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.1-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.07-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.82(\mathrm{~m}, 2 \mathrm{H})$, $4.57(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 138.6,137.9,136.6,129.0,128.1,128.0,115.6,58.8,37.5$, 19.4. MS (ESI): $163[\mathrm{M}+\mathrm{H}]^{+}$.

2-Allyl-6-methylbenzaldehyde (16). Following the procedure detailed for the preparation of 14 , compound $16(640 \mathrm{mg}, 4 \mathrm{mmol})$ was prepared from compound VII ($777 \mathrm{mg}, 4.8 \mathrm{mmol}$) as a colorless liquid in 85% yield after column chromatography using $10 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent. $R_{\mathrm{f}}=0.3(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v})$. IR (neat): 2926, 1692, 1592, 1467, 1189, 915, $734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $10.43(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.97-$ $5.81(\mathrm{~m}, 1 \mathrm{H}), 5-4.81(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.0, 142.3, 140.6, 136.9, 132.7, 131.9, 129.9, 128.7, 115.9, 36.9, 20.4. MS (ESI): $161[\mathrm{M}+\mathrm{H}]^{+}$.
(((3S,5S, 10bR)-10-Methyl-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinolin-5-yl)methyl)mercury(II) Bromide (17). Organomercurial $17(450 \mathrm{mg}, 0.82 \mathrm{mmol})$ was obtained from aldehyde 16 $(160 \mathrm{mg}, 1 \mathrm{mmol})$ as a white solid in 82% yield after column chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent. Mp : $120-122{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v}) .[\alpha]_{\mathrm{D}}{ }^{25}=-11.8(c 1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): 2927, 1731, 1636, 1454, 1255, 1033, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.46-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.45$ $(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{dd}$, $J=8.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=15.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.8$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.1(\mathrm{dd}, J=$ $12.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7,137.9,133.8$, 130.0, 129.7, 129.0, 128.4, 128.0, 126.7, 125.2, 89.8, 72.8, 66.9, 55.1, 40.3, 27.0, 19.4. MS (ESI): $560[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NOBrHg} 560.0512$, found 560.0523 .
(E)-2-(4-Hydroxybut-2-enyl)benzaldehyde (18). To a stirred solution of cis-2-butene-1,4-diol ($528 \mathrm{mg}, 6 \mathrm{mmol}$) and aldehyde 1 $(292 \mathrm{mg}, 2 \mathrm{mmol})$ in anhydrous dichloromethane $(10 \mathrm{~mL})$ was added the Grubbs second-generation catalyst ($42 \mathrm{mg}, 0.05 \mathrm{mmol}$). The reaction mixture was stirred at room temperature under a nitrogen atmosphere for 12 h . The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography using
$20 \% \mathrm{EtOAc} /$ hexanes (v / v) as the eluent to afford the pure allylic alcohol $18(264 \mathrm{mg}, 1.5 \mathrm{mmol})$ as a viscous oil in 75% yield. $R_{\mathrm{f}}=0.2(20 \%$ EtOAc/hexane, v/v). IR (neat): 3378, 2922, 1729, 1692, 1573, 1403, 1288, 1088, $974,763 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.16(\mathrm{~s}$, $1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.9-5.78(\mathrm{~m}$, $1 \mathrm{H}), 5.6-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.5,142.2,133.9,133.6,131.9$, 131.0, 130.8, 130.5, 126.8, 63.1, 35.0. MS (ESI): $199[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na}$ 199.0734, found 199.0739.
(E)-2-(4-(tert-Butyldimethylsilyloxy)but-2-enyl)benzaldehyde (19). To a solution of alcohol $18(265 \mathrm{mg}, 1.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added imidazole ($204 \mathrm{mg}, 3 \mathrm{mmol}$) and $\mathrm{TBSCl}(226 \mathrm{mg}, 1.5$ mmol) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was gradually warmed to room temperature over a period of 1 h . Water was added to the reaction mixture, the two layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude residue, which upon silica gel chromatography using 10% $\mathrm{EtOAc} /$ hexane (v / v) as the eluent afforded pure TBS ether $23(377 \mathrm{mg}$, $1.3 \mathrm{mmol})$ as a viscous oil in 90% yield. $R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane, v/ v). IR (neat): 2954, 2730, 1698, 1464, 1253, 1046, 837, $776 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.1-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=5.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.2(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 192.2, 142.6, 133.9, 133.7, 131.39, 131.3, 130.9, 128.8, 126.7, 63.5, 34.9, 25.8, 18.3, -3.6, -5.2. MS (ESI): $313[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}$ $+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{NaSi} 313.1599$, found 313.1607.
((S)-2-(tert-Butyldimethylsilyloxy)-1-((3S,5S, 10bR)-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinolin-5-yl)ethyl)mercury(II) Bromide (20). Organomercurial 20 ($580 \mathrm{mg}, 0.85 \mathrm{mmol}$) was obtained from aldehyde $19(160 \mathrm{mg}, 1 \mathrm{mmol})$ in 85% yield as a white solid after column chromatography using $5 \% \mathrm{EtOAc} /$ hexane (v/ v) as the eluent. Mp: $120-122{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.2(5 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v})$. $[\alpha]_{\mathrm{D}}{ }^{25}=-3.2\left(c \mathrm{l}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2928, 2858, 1387, 1032, 961, $776 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.6-7.14(\mathrm{~m}, 9 \mathrm{H}), 5.72(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{dd}, J=8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.85$ $(\mathrm{m}, 2 \mathrm{H}), 3.79-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.3(\mathrm{dd}, J=15.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.12$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.8,133.4,132.4,129.6$, 128.4, 127.9, 127.5, 127.4, 127.0, 126.9, 90.7, 73.7, 68.6, 68.5, 62.5, 59.9, 37.4, 25.8, 18.0, -5.2, -5.3. MS (ESI): $690[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m /$ $z[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SiBrHg}$ 690.1326, found 690.1320 .
(((3S,5S,6R,7aR)-3,6-Diphenylhexahydropyrrolo[2,1-b]oxazol-5yl)methyl)mercury(II) Bromide (22). Organomercurials 22 and 23 were obtained in equimolar amounts from aldehyde $21(160 \mathrm{mg}, 1 \mathrm{mmol})$ in 85% yield as white solids after column chromatography using 10% $\mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})$ as the eluent. Mp: $137-139^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.3(10 \%$ $\mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=+11.5\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (neat): 2923, 2814, $1486,1377,1144,1024,901,696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.33-7.14(\mathrm{~m}, 10 \mathrm{H}), 5.1(\mathrm{dd}, J=5.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=8.8,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=8.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.5-3.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.9-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.18(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.1,139.6,129.2,129.0,127.8,127.7$, 127.6, 126.6, 97.3, 75.8, 72.4, 67.8, 55.7, 39.2, 38.6. MS (ESI): $560[\mathrm{M}+$ $\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNOHg} 560.0512$, found 560.0501 .
(((3S,5R,6S,7aR)-3,6-Diphenylhexahydropyrrolo[2,1-b]oxazol-5yl)methyl)mercury(II) Bromide (23). Mp: $135-137^{\circ} \mathrm{C}$. $R_{\mathrm{f}}=0.2$ (10% $\mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=-41.2$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat): 2924, 2854, 1777, 1452, 1029, $755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46-7.1$ $(\mathrm{m}, 10 \mathrm{H}), 5.46(\mathrm{dd}, J=5.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{dd}, J=7.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H})$, $2.05-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.55(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 141.9, 140.7, 129.5, 129.1, 128.4, 128.1, 127.6, 126.5, 99.1, 75.6, 67.9, 67.7, 50.8, 36.8, 31.8. MS (ESI): $560[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NOBrHg} 560.0512$, found 560.0500 .

General Procedure for Demercuration. To a stirred solution of the organomercurial (1 equiv) in dry toluene $(0.25 \mathrm{M})$ cooled to $-78^{\circ} \mathrm{C}$ was added a solution of tributyltin hydride (1 equiv) in toluene (0.25 M) followed by triethylborane (0.6 equiv). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and diluted with $\mathrm{EtOAc}(0.1 \mathrm{M})$ and saturated aqueous $\mathrm{KF}(0.5 \mathrm{M})$. The reaction mixture was stirred for another 30 min at room temperature. The precipitated tributyltin fluoride was removed by filtration and the solid washed with EtOAc. The combined filtrates were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residual oil was purified by column chromatography using EtOAc/hexane (v/v) as the eluent to afford the pure demercuration product.
(3S,5R,10bR)-5-Methyl-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinoline (5). Following the general procedure for demercuration, compound $5(210 \mathrm{mg}, 0.8 \mathrm{mmol})$ was prepared from organomercurial 4 ($545 \mathrm{mg}, 1 \mathrm{mmol}$) as a colorless liquid in 80% yield after column chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent. $R_{\mathrm{f}}=0.2\left(10 \%\right.$ EtOAc/hexane, v/v). $[\alpha]_{\mathrm{D}}{ }^{25}=+40\left(c 1, \mathrm{CHCl}_{3}\right)$. IR (neat): 2927, 2854, 1730, 1456, 1276, $952,747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.42-7.0(\mathrm{~m}, 9 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.38-4.28(\mathrm{~m}$, $2 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 1 \mathrm{H}), 3-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7,134.9,132.6$, $128.4,127.9,127.8,127.4,126.9,126.5,126.2,90.5,71.8,66.3,50.5$, 37.3, 21.2. MS (ESI): $266[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO} 266.1539$, found 266.1536.
(S)-2-((R)-3-Methyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylethanol (9). Following the general procedure for demercuration, compound 9 ($240 \mathrm{mg}, 0.9 \mathrm{mmol}$) was prepared from organomercurial 4 ($545 \mathrm{mg}, 1 \mathrm{mmol}$) using excess tributyltin hydride ($0.5 \mathrm{~mL}, 2 \mathrm{mmol}$) as a colorless liquid in 90% yield after column chromatography using $20 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent. $R_{\mathrm{f}}=0.2(20 \% \mathrm{EtOAc} /$ hexane $)$. $[\alpha]_{\mathrm{D}}{ }^{25}=+10.4\left(c 1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$ (neat): 2957, 2863, 1457, 1219, 1075, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.42-6.88(\mathrm{~m}, 9 \mathrm{H}), 3.89(\mathrm{dd}$, $J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.63(\mathrm{~m}, 3 \mathrm{H})$, $3.55(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=15.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-2.97$ (bs, $1 \mathrm{H}), 2.47(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.1,133.7,133.1,129.3,128.7,128.4,127.8,126.3$, 126.1, 125.4, 68.0, 62.3, 50.5, 45.3, 35.6, 13.1. MS (ESI): $268[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO} 268.1695$, found 268.1694.
(3S,5R,10bR)-5,10b-Dimethyl-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinoline (26). To a solution of compound 24 (160 $\mathrm{mg}, 1 \mathrm{mmol}$) and (S)-phenylglycinol ($151 \mathrm{mg}, 1.1 \mathrm{mmol}$) in anhydrous dichloromethane $(1 \mathrm{~mL})$ was added $\mathrm{Ti}(\mathrm{OEt})_{4}(0.5 \mathrm{~mL}, 2.2 \mathrm{mmol})$ and the mixture stirred at room temperature for 16 h to ensure imine formation. The reaction mixture was diluted with anhydrous dichloromethane (4 mL). Organomercurial 25 ($420 \mathrm{mg}, 0.75 \mathrm{mmol}$) was obtained following the general procedure in 75% yield after flash column chromatography using 10% EtOAc/hexane (v / v) as the eluent. $R_{\mathrm{f}}=0.2$ ($10 \% \mathrm{EtOAc} /$ hexane, v/v). Since 25 was found to be unstable, it was taken to the next step without characterization. Following the general procedure for demercuration, compound $26(140 \mathrm{mg}, 0.5 \mathrm{mmol})$ was obtained from organomercurial $25(420 \mathrm{mg}, 0.75 \mathrm{mmol})$ as a colorless liquid in 70% yield after column chromatography using $10 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent. $R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+16.4\left(c 1, \mathrm{CHCl}_{3}\right)$. IR (neat): 2925, 2866, 1755, 1455, 1251, 1073, 759 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.5-7.0(\mathrm{~m}, 9 \mathrm{H}), 4.17(\mathrm{dd} J=7.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.5(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=$ $16.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=16.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.36$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,139.3,135.3$, 128.2, 128.1, 127.2, 126.9, 126.5, 95.9, 72.7, 58.6, 48.7, 29.9, 28.2, 21.6. MS (ESI): $280[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO} 280.1695$, found 280.1690.
(S)-2-((1S,3R)-5-(Benzyloxy)-6-methoxy-1,3-dimethyl-3,4-dihy-droisoquinolin-2(1H)-yl)-2-phenylethanol (30). Following the procedure detailed above, ketone $28(296 \mathrm{mg}, 1 \mathrm{mmol})$ was subjected to an aminomercuration-demercuration sequence to furnish compound 30 ($332 \mathrm{mg}, 0.8 \mathrm{mmol}$) in 80% yield after column chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent. $R_{\mathrm{f}}=0.3(10 \% \mathrm{EtOAc} /$ hexane $)$. $[\alpha]_{\mathrm{D}}{ }^{25}=+42.7\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2924, 2854, 1717, 1590, 1455,

1251, 1073, $759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.49-7.17(\mathrm{~m}$, $10 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=8.0,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.1,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.88(\mathrm{dd}, J=15.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=15.7$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 151.3,146.5,143.2,137.8,128.54,128.5,128.3,128.2,128.1$, 127.9, 126.8, 110.7, 95.7, 74.0, 72.5, 68.3, 58.4, 48.3, 31.7, 29.4, 21.7. MS (ESI): $416[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NNaO}_{3} 438.2040$, found 438.2050 .
(3S,5R,10bR)-5,10-Dimethyl-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinoline (32). Following the general procedure for demercuration, compound $32(210 \mathrm{mg}, 0.8 \mathrm{mmol})$ was prepared from organomercurial $17(559 \mathrm{mg}, 1 \mathrm{mmol})$ as a colorless liquid in 80% yield after column chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent. $R_{\mathrm{f}}=0.2(10 \% \mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=+58.9\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2926, 2853, 1597, 1379, 1037, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 7.49-6.87(\mathrm{~m}, 8 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.6-4.41(\mathrm{~m}, 2 \mathrm{H}), 3.7-3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.11-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.2(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.0,137.7,135.1$, 130.2, 128.5, 128.4, 128.0, 126.9, 126.5, 125.3, 89.1, 70.8, 64.8, 49.3, 38.0, 21.0, 19.0. MS (ESI): $280[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO} 280.1691$, found 280.1701.
(3S,5S, 10bR)-3-Phenyl-5-((2,2,6,6-tetramethylpiperidin-1-yloxy)-methyl)-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinoline (10). To a stirred solution of organomercurial $4(545 \mathrm{mg}, 1 \mathrm{mmol})$ in anhydrous DMF (10 mL) was added TEMPO ($450 \mathrm{mg}, 3 \mathrm{mmol}$). This solution was then added dropwise via cannula to an oxygen-saturated solution of $\mathrm{NaBH}_{4}(150 \mathrm{mg}, 4 \mathrm{mmol})$ in dry DMF (4 mL) cooled to 0 ${ }^{\circ} \mathrm{C}$. After 10 min , the precipitated mercury was filtered through Celite and the solution was diluted with ether. The organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude residue was purified by column chromatography using 5\% EtOAc/ hexane as the eluent to afford pure $10(335 \mathrm{mg}, 0.8 \mathrm{mmol})$ as a colorless liquid in 80% yield. $R_{\mathrm{f}}=0.5(10 \% \mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=+24.5(c 1$, CHCl_{3}). IR (neat): 2925, 2854, 1459, 1049, 956, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.08(\mathrm{~m}, 9 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.8(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.56$ $(\mathrm{m}, 2 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J$ $=16.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.6-0.8(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 141.7, 134.2, 132.7, 128.2, 127.8, 127.7, 127.5, 126.8, 126.4, 126.1, 89.9, 80.2, 71.6, 66.2, 59.4, 54.3, 39.2, 32.5, 31.7, 29.4, 19.9, 19.8, 16.7. MS (ESI): $421[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} 421.2858$, found 421.2855 .
(S)-(1,2,3,4-Tetrahydroisoquinolin-3-yl)methanol (11). To a stirred solution of $\mathbf{1 0}(335 \mathrm{mg}, 0.8 \mathrm{mmol})$ in 50% aqueous $\mathrm{CH}_{3} \mathrm{COOH}(8 \mathrm{~mL})$ was added activated Zn dust $(565 \mathrm{mg}, 8.7 \mathrm{mmol})$. The mixture was submerged in an oil bath maintained at $100^{\circ} \mathrm{C}$ and heated for 1 h . After it was cooled to room temperature, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ (8 $\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined extracts were neutralized with saturated aqueous sodium bicarbonate solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography using $20 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent to afford compound $11(170 \mathrm{mg}, 0.6 \mathrm{mmol})$ as a colorless liquid in 75% yield. $R_{f}=$ $0.2(10 \% \mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=+56.8\left(c 1, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$ (neat): 3345, 2925, 2854, 1734, 1454, 1040, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.22-6.98(\mathrm{~m}, 4 \mathrm{H}), 4.85-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dd}$, $J=11.5,7.1 \mathrm{~Hz} 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 134.3,132.4,128.9,126.4$, 125.9, 124.1, 75.3, 68.0, 65.5, 29.4. MS (ESI): $164[\mathrm{M}+\mathrm{H}]^{+}$.
(S)-2-((1R,3R)-1,3-Dimethyl-3,4-dihydroisoquinolin-2(1H)-yl)-2phenylethanol (6). To a stirred solution of compound $5(265 \mathrm{mg}, 1$ $\mathrm{mmol})$ in dry ether $(4 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ was added methylmagnesium iodide ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1 \mathrm{M}$ in ether) dropwise under an N_{2} atmosphere. Stirring was continued for 1 h at $0^{\circ} \mathrm{C}$, and the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated from the aqueous layer, and the aqueous layer was extracted with ether $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The crude product was purified by column chromatography using $10 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent to afford the pure product
$6(220 \mathrm{mg}, 0.8 \mathrm{mmol})$ in 80% yield as a colorless liquid. $R_{\mathrm{f}}=0.3(10 \%$ $\mathrm{EtOAc} /$ hexane, v/v). $[\alpha]_{\mathrm{D}}{ }^{25}=+46.9\left(c 4, \mathrm{CHCl}_{3}\right)$. IR (neat): 2923, 2854, 1739, 1376, 1032, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.0$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.75(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.4(\mathrm{dd}$, $J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=9.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72-3.6(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.4(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.2(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.4(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 139.0, 138.5, 134.0, 128.9, 128.2, 127.5, 127.0, 126.8, 126.3, 125.4, 61.4, 60.3, 51.5, 47.3, 33.4, 24.5, 19.7. MS (ESI): $282[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}$ 282.1852, found 282.1851.
(S)-2-((1R,3R)-3-Methyl-1-vinyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylethanol (7). To a stirred solution of compound $5(265 \mathrm{mg}, 1$ $\mathrm{mmol})$ in dry THF (5 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added vinylmagnesium bromide ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1 \mathrm{M}$ in THF) dropwise under an N_{2} atmosphere, and the temperature was gradually allowed to rise to $0^{\circ} \mathrm{C}$ over a period of 1 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer extracted with ethyl acetate $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo to afford pure $7(220 \mathrm{mg}, 0.75 \mathrm{mmol})$ as a colorless liquid in 75% yield after column chromatography using 5% $\mathrm{EtOAc} /$ hexane (v / v) as the eluent. $R_{\mathrm{f}}=0.5(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v})$. $[\alpha]_{\mathrm{D}}{ }^{25}=+35.3\left(c 1, \mathrm{CHCl}_{3}\right)$. IR (neat): 2922, 2852, 1637, 1460, 1374, 1036, $757 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.5-6.6(\mathrm{~m}, 9 \mathrm{H})$, $6.03-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.15-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.2$ $(\mathrm{m}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.6-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.5-2.3(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.6,137.4$, 134.9, 129.9, 128.77, 128.71, 127.8, 127.7, 127.4, 125.9, 125.2, 116.5, 61.6, 60.9, 58.7, 47.8, 34.3, 19.3. MS (ESI): $294[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}$ 294.1853, found 294.1857.
(S)-2-((1R,3R)-3-Methyl-1-(oct-1-ynyl)-3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylethanol (8). To a stirred solution of 1-octyne (330 $\mathrm{mg}, 3 \mathrm{mmol}$) in dry THF (1 mL) was added isopropylmagnesium chloride ($3 \mathrm{~mL}, 3 \mathrm{mmol}, 1 \mathrm{M}$ in THF) dropwise under an N_{2} atmosphere at $-10{ }^{\circ} \mathrm{C}$. The reaction mixture was gradually warmed to $0^{\circ} \mathrm{C}$ and stirred further at the same temperature for 30 min . The reaction mixture was recooled to $-10^{\circ} \mathrm{C}$, and compound $5(265 \mathrm{mg}, 1$ $\mathrm{mmol})$ in dry THF (4 mL) was added to it. Stirring was continued for 1 h at $0^{\circ} \mathrm{C}$, and the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated, and the aqueous layer was extracted with ether $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with saturated brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. The crude product was purified through silica gel chromatography using $5 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent to afford 8 $(280 \mathrm{mg}, 0.75 \mathrm{mmol})$ as a colorless liquid in 75% yield. $R_{\mathrm{f}}=0.3(10 \%$ $\mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=+54.4$ (c 1, CHCl_{3}). IR (neat): 2927, 2860, 1601, 1455, 1157, 1036, $747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.25-6.76(\mathrm{~m}, 9 \mathrm{H}), 4.8(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=8.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J$ $=11.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.6(\mathrm{~m}, 1 \mathrm{H})$, $2.73(\mathrm{dd}, J=16.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=16.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.5-0.77(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.6$, 136.5, 134.2, 128.4, 128.0, 127.1, 126.5, 126.3, 125.6, 86.0, 80.7, 62.47, 62.4, 49.3, 49.2, 36.2, 31.2, 28.5, 22.4, 20.4, 18.8, 13.9, 13.5. MS (ESI): $376[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO} 375.2524$, found 375.2556 .
(S)-2-((1R,3R)-1,3-dimethyl-3,4-dihydroisoquinolin-2(1H)-yl)-2phenylethanol (6). To a stirred solution of compound 26 ($279 \mathrm{mg}, 1$ mmol) in anhydrous THF (4 mL) cooled to $0^{\circ} \mathrm{C}$ was added sodium borohydride ($185 \mathrm{mg}, 5 \mathrm{mmol}$) followed by trifluoroacetic acid $(0.8 \mathrm{~mL}$, 10 mmol) under an N_{2} atmosphere, and the mixture was warmed to room temperature gradually over a period of 30 min . The reaction mixture was quenched with aqueous NaHCO_{3}. The organic layer was separated from the aqueous layer, and the aqueous layer was extracted with ether $(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. The crude product was purified through silica gel chromatography using $10 \% \mathrm{EtOAc} /$ petroleum ether (v / v) to afford 1,3-anti alcohol $6(168 \mathrm{mg}, 0.6 \mathrm{mmol})$ in 60% yield.
(S)-2-((1S,3R)-1,3-Dimethyl-3,4-dihydroisoquinolin-2(1H)-yl)-2phenylethanol (27). To a suspension of $\mathrm{LiAlH}_{4}(410 \mathrm{mg}, 10.3 \mathrm{mmol})$ in
anhydrous ether $(10 \mathrm{~mL})$ cooled to $-10{ }^{\circ} \mathrm{C}$ was added a solution of anhydrous AlCl_{3} ($500 \mathrm{mg}, 3.5 \mathrm{mmol}$) dissolved in anhydrous ether (10 mL) under an argon atmosphere and the mixture stirred for 15 min . To the resulting alane was slowly added a solution of compound 26 (279 $\mathrm{mg}, 1 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$. The reaction mixture was stirred for another 30 min at $-10^{\circ} \mathrm{C}$ and quenched by adding small ice pieces. The precipitated solids were filtered through Celite, and the solids were washed with hot EtOAc $(2 \times 5 \mathrm{~mL})$. The combined filtrates were evaporated under reduced pressure, and the residue was purified by column chromatography using $10 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent to afford pure 1,3-syn alcohol $27(210 \mathrm{mg}, 0.75 \mathrm{mmol})$ as a viscous liquid in 75% yield. $R_{\mathrm{f}}=0.3(10 \% \mathrm{EtOAc} /$ hexane, $\mathrm{v} / \mathrm{v}) .[\alpha]_{\mathrm{D}}{ }^{25}=+121(c 1$, CHCl_{3}). IR (neat): $2960,2925,1453,1374,1031,758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.03(\mathrm{~m}, 9 \mathrm{H}), 4.35(\mathrm{dd}, J=9.7,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.1(\mathrm{dd}, J=10.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.6(\mathrm{dd}, J=10.5,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=15.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.5(\mathrm{dd}, J=$ $15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.8,139.6,133.9,128.5,128.3,127.7$, 126.4, 125.8, 125.6, 60.2, 51.2, 44.8, 38.1, 23.0, 15.7. MS (ESI): 282 [M $+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}$ 282.1852, found 282.1846 .
(S)-2-((1S,3R)-5-(Benzyloxy)-6-methoxy-1,3-dimethyl-3,4-dihy-droisoquinolin-2(1H)-yl)-2-phenylethanol (31). Following the procedure detailed above, compound $30(332 \mathrm{mg}, 0.8 \mathrm{mmol})$ was subjected to alane reduction to furnish compound $31(250 \mathrm{mg}, 0.6 \mathrm{mmol})$ in 75% yield after column chromatography using $20 \% \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})$ as the eluent. $R_{\mathrm{f}}=0.2(20 \% \mathrm{EtOAc} /$ hexane $) .[\alpha]_{\mathrm{D}}{ }^{25}=+86.7\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2958, 2924, 2854, 1717, 1590, 1455, 1351, 1030, $759 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.49-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.9-6.78(\mathrm{~m}, 2 \mathrm{H})$ $5.1-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 1 \mathrm{H})$, $4.03(\mathrm{t}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.7(\mathrm{dd}, J=16.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.3,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.4,145.3,139.6,134.2,128.5,128.3,127.92,127.9$, 127.6, 121.9, 110.1, 74.2, 60.2, 60.1, 55.8, 50.6, 44.3, 32.3, 23.1. MS (ESI): $418[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NNaO}_{3} 440.2196$, found 440.2218 .
(3S,5R,10bR)-5,10-dimethyl-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinoline (32). To a stirred solution of compound 16 $(160 \mathrm{mg}, 1 \mathrm{mmol})$ and (S)-phenylglycinol $(151 \mathrm{mg}, 1.1 \mathrm{mmol})$ in $1,4-$ dioxane $(5 \mathrm{~mL})$ were added DPEphos ($8 \mathrm{mg}, 3 \mathrm{~mol} \%$) and $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(10 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$ under an N_{2} atmosphere, and the mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature and filtered through Celite. The residue was washed with EtOAc $(2 \times 5 \mathrm{~mL})$, and the combined filtrates were washed successively with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by silica gel chromatography using $10 \% \mathrm{EtOAc}$ /petroleum ether (v/v) to give pure compound $32(200 \mathrm{mg}, 0.7 \mathrm{mmol})$ as a colorless liquid in 70% yield.
(3S,5R,10bR)-7-(Benzyloxy)-8-methoxy-5-methyl-3-phenyl-3,5,6,10b-tetrahydro-2H-oxazolo[2,3-a]isoquinoline (33). Following the procedure detailed above, aldehyde $12(282 \mathrm{mg}, 1 \mathrm{mmol})$ was subjected to catalytic hydroamination to furnish compound 33 (340 mg , 0.85 mmol) in 85% yield after column chromatography using 20% $\mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent. $R_{\mathrm{f}}=0.2(20 \% \mathrm{EtOAc} /$ hexane $)$. $[\alpha]_{\mathrm{D}}{ }^{25}=+79.5\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (neat): 2926, 2850, 1590, 1405, 1053, $752 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.48-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.17(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.9(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}$, $J=11.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.82(\mathrm{~m}$, $1 \mathrm{H}), 2.4(\mathrm{dd}, J=16.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.1,144.0,142.8,137.7,132.4,131.9,130.8$, 128.7, 128.6, 128.4, 128.3, 127.9, 127.5, 126.6, 126.4, 123.8, 110.7, 90.3, 74.5, 71.6, 66.1, 55.8, 50.1, 31.4, 21.3. MS (ESI): $402[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{3} 402.2064$, found 402.2086.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00525.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail for S.R.: sraghavan@iict.res.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

P.S. is thankful to the CSIR for an SRF fellowship. S.R. acknowledges funding from the DST (SR/S1/OC-5/2011) and the CSIR, New Delhi, India, as a part of the XII five year plan program under the title ORIGIN (CSC-108).

REFERENCES

(1) (a) Scott, J. D.; Williams, R. Chem. Rev. 2002, 102, 1669. (b) Bentley, K. W. Nat. Prod. Rep. 2006, 23, 444. (c) Zhang, Q. Y.; Tu, G. Z.; Zhao, Y. Y.; Cheng, T. M. Tetrahedron 2002, 58, 6795. (d) Aladesanmi, A. J.; Kelley, C. J.; Leary, J. D. J. Nat. Prod. 1983, 46, 127. (e) Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Chem. Rev. 2007, 107, 274. (f) Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J. A.; Tekmal, R. R.; Petros, J.; Joshi, H. C. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 1601. (g) Kelleher, C. J.; Cardozo, L.; Chapple, C. R.; Haab, F.; Ridder, A. M. BJU Int. 2005, 95, 81.
(2) (a) Arroyo, F. J.; Lopez-Alvarado, P.; Ganesan, A.; Menéndez, J. C. Eur. J. Org. Chem. 2014, 2014, 5720. (b) Mons, E.; Wanner, M. J.; Ingemann, S.; van Maarseveen, J. H.; Hiemstra, H. J. Org. Chem. 2014, 79, 7380.
(3) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341.
(4) For representative reviews, see: (a) Zhou, Y. G. Acc. Chem. Res. 2007, 40, 1357. (b) Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Chem. Rev. 2012, 112, 2557.
(5) For selected examples of the asymmetric hydrogenation of isoquinolines, see: (a) Lu, S. M.; Wang, Y. Q.; Han, X. W.; Zhou, Y. G. Angew. Chem., Int. Ed. 2006, 45, 2260. (b) Li, C. Q.; Xiao, J. L. J. Am. Chem. Soc. 2008, 130, 13208. (c) Yan, P. C.; Xie, J. H.; Hou, G. H.; Wang, L. X.; Zhou, Q. L. Adv. Synth. Catal. 2009, 351, 3243. (d) Evanno, L.; Ormala, J.; Pihko, P. M. Chem. - Eur. J. 2009, 15, 12963. (e) Chang, M. X.; Li, W.; Zhang, X. M. Angew. Chem., Int. Ed. 2011, 50, 10679. (f) Berhal, F.; Wu, Z.; Zhang, Z. G.; Ayad, T.; Ratovelomanana-Vidal, V. Org. Lett. 2012, 14, 3308. (g) Iimuro, A.; Yamaji, K.; Kandula, S.; Nagano, T.; Kita, Y.; Mashima, K. Angew. Chem., Int. Ed. 2013, 52, 2046. (h) Wu, Z.; Perez, M.; Scalone, M.; Ayad, T.; Ratovelomanana-Vidal, V. Angew. Chem., Int. Ed. 2013, 52, 4925.
(6) For reviews, see: (a) Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.
(b) Li, C. J. Acc. Chem. Res. 2009, 42, 335. (c) Zhang, C.; Tang, C. H.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (d) Shi, L.; Xia, W. J. Chem. Soc. Rev. 2012, 41, 7687.
(7) (a) Monsees, A.; Laschat, S.; Dix, I. J. Org. Chem. 1998, 63, 10018.
(b) Huber, I. M. P.; Seebach, D. Helv. Chim. Acta 1987, 70, 1944.
(8) Carrillo, L.; Badía, D.; Domínguez, E.; Anakabe, E.; Osante, I.; Tellitu, I.; Vicario, J. L. J. Org. Chem. 1999, 64, 1115.
(9) (a) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552. For earlier examples of use of the intramolecular Heck reaction for the synthesis of tetrahydroisoquinolines see: (b) Burns, B.; Grigg, R.; Santhakumar, V.; Sridharan, V.; Stevenson, P.; Worakun, T. Tetrahedron 1992, 48, 7297 and references therein. (c) Tietze, L. F.; Burkhardt, O. Synthesis 1994, 1994, 1331. (d) Tietze, L. F.; Burkhardt, O.; Henrich, M. Liebigs Ann. Chem. 1997, 1997, 1407.
(10) (a) De Koning, C. B.; van Otterlo, W. A. L.; Michael, J. P. Tetrahedron 2003, 59, 8337 and references therein. (b) Eustache, J.; Van de Weghe, P.; Nouen, D. L.; Uyehara, H.; Kabuto, C.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4043.
(11) Magnus, P.; Matthews, K. S.; Lynch, V. Org. Lett. 2003, 5, 2181.
(12) Enders, D.; Liebich, J. X.; Raabe, G. Chem. - Eur. J. 2010, 16, 9763.
(13) (a) Ashley, E. R.; Cruz, E. G.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 15000. (b) Huang, S.; Petersen, T. B.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 14021.
(14) Semmelhack, M. F.; Zask, A. J. Am. Chem. Soc. 1983, 105, 2034.
(15) Kiyooka, S. Tetrahedron: Asymmetry 2003, 14, 2897.
(16) Hayes, P.; Suthers, B. D.; Kitching, W. Tetrahedron Lett. 2000, 41, 6175.
(17) Howell, A. R.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1990, 2715.
(18) Yang, W.; Liu, J.; Zhang, H. Tetrahedron Lett. 2010, 51, 4874.
(19) (a) Koolaji, N.; Abu-Mellal, A.; Tran, V. H.; Duke, R. K.; Duke, C. C. Eur. J. Med. Chem. 2013, 63, 415. (b) Masurier, N.; Estour, F.; Froment, M.-T.; Lefevre, B.; Debouzy, J.-C.; Brasme, B.; Masson, P.; Lafont, O. Eur. J. Med. Chem. 2005, 40, 615.
(20) Boivin, J.; Fouquet, E.; Zard, S. Z. Tetrahedron 1994, 50, 1745.
(21) Tarantino, K. T.; Liu, P.; Knowles, R. J. Am. Chem. Soc. 2013, 135, 10022.
(22) (a) Pedrosa, R.; Andrés, C.; Nieto, J.; delPozo, S. J. Org. Chem. 2003, 68, 4923. (b) Gosmann, G.; Guillaume, D.; Husson, H. P. Tetrahedron Lett. 1996, 37, 4369.
(23) De Koning, C. B.; Giles, R. G. F.; Green, I. R.; Jahed, N. M. Tetrahedron 2003, 59, 3175.
(24) Liu, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 1570.

[^0]: Received: March 11, 2016
 Published: July 12, 2016

